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Abstract

A statistical nonlinearization (SNL) technique is proposed for the solution of the joint probability
density function of general multi-degrees of freedom (mdof) nonlinear systems under stationary white noise
excitations. The nonlinearities associated with damping and restoring forces as well as the intensities of
excitations are not necessarily small. It is based on the application of the exact solution of the joint
probability density function of a mdof nonlinear systems under stationary white noise excitations. This
exact solution is different from that of Caughey in that in the present exact solution the ratios of damping
coefficients to applied white noise excitations are not identical. The exact solution is also different from
those of Cai and Lin, and Zhu and Huang in that the present exact solution is obtained directly from the
theory of differential equations while that of Cai and Lin requires satisfaction of a relatively restrictive
criterion. Furthermore, the Hamiltonian formulation is applied by Zhu and Huang. Their solution depends
on the number of independent integrals of motion, for example. Results by applying the proposed
technique for a general two-degrees of freedom nonlinear system are compared with those obtained by
Monte Carlo simulation (MCS). It is concluded that the technique is accurate, simple to implement and is
applicable to mdof systems with both nonlinear damping and nonlinear restoring forces.
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1. Introduction

Various statistical nonlinearization (SNL) techniques exist in the literature for single-degree of
freedom (sdof) nonlinear systems under stationary white noise excitation [1]. For two-degrees of
freedom (tdof) nonlinear systems the author has presented two SNL techniques [2,3] for response
analysis. In Ref. [2], the SNL technique for the tdof nonlinear system is based on the exact
solution of Caughey [4,5] in which the ratios of coefficients of linear damping forces to intensities
of stationary white noise excitations are identical. Therefore, the class of tdof nonlinear systems
that can be solved by the SNL technique in Ref. [2] is not large. The SNL technique for tdof
nonlinear system in Ref. [3] improved that in Ref. [2] so that the ratios of coefficients of linear
damping forces to the intensities of stationary white noise excitations are not identical. Owing to
its usefulness and simplicity as well as the fact that it includes a much wider class of tdof nonlinear
systems, it is further developed and generalized for application to multi-degrees of freedom (mdof)
nonlinear systems under stationary white noise excitations. As there is no exact solution for the
joint probability density function of mdof systems with both nonlinear damping forces and
nonlinear restoring forces, the presently proposed SNL technique can be applied to obtain the
approximate solution.
The organization of the remaining part of this paper is as follows. Section 2 is concerned with

the theoretical development and exact solution of the reduced Fokker–Planck–Kolmogorov
(FPK) equation for mdof nonlinear systems in which the dampling forces are linear. However, the
ratios of damping coefficients to intensities of white noise excitations are not equal and therefore
this exact solution is not similar to those available in the literature. Section 3 deals with the
development of the new SNL technique for a relatively wide class of mdof nonlinear systems in
which the damping forces and restoring forces are nonlinear. Application is made in Section 4 of
the SNL technique for the solution of a tdof system that has nonlinear damping and nonlinear
stiffness terms. Computed results by applying the proposed SNL technique are compared
with those from Monte Carlo simulation (MCS). The final section, Section 5, includes
concluding remarks.
2. Exact solution of mdof nonlinear systems

Many solutions have been reported in the literature in regard to the exact joint stationary
probability density functions of mdof nonlinear systems under stationary random excitations.
These solutions hinge around a generalized stationary potential that is proportional to the total
energy of the system and its kinetic energies among different modes are identically distributed.
The latter is known as equipartitioning of energy in the field of statistical mechanics. Typical
results can be found, for example, in the publications of Caughey [4,5], Lin and Cai [6], Soize [7],
Zhu and Lin [8], and To [2]. It may be appropriate to note that more recently there are other exact
solutions to the reduced FPK equation for mdof nonlinear systems in the literature [9,10]. Strictly
speaking, dampings considered in these two references are linear since their coefficients are
functions of total energies which are constant in the time domain, and solutions are hinged on
various conditions. For example, in Ref. [10], a Hamiltonian formulation is adopted for the
solution of non-resonant and resonant cases. The existence of action and angle variables of the
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integrable part of the Hamiltonian system is assumed. Furthermore, in the resonant case a
restriction on the diffusion coefficients of the system is imposed. Without such a restriction on the
diffusion coefficients solution cannot be found.
In this section, an improved solution of the joint stationary probability density function of an

mdof nonlinear system under stationary white noise excitations is presented. The solution is free
from the limitation of Refs. [4,5] that the ratios of coefficients of linear damping forces to
intensities of white noise excitations are being equal. It is direct and simple compared with those in
Refs. [9,10].
Consider the mdof nonlinear system governed by the equations of motion

€yi þ aii _yi þ giðy1; y2; . . . ; ynÞ ¼ wiðtÞ; (1)

where wiðtÞ; i ¼ 1; 2; . . . ; n are the zero mean Gaussian white noise excitations with

hwiðt1Þwiðt2Þi ¼ 2pSidðt1 � t2Þ ¼ 2Didðt1 � t2Þ;

hwiðt1Þwjðt2Þi ¼ 0; iaj;

in which Si are the spectral densities of the Gaussian white noises and the angular brackets denote
the ensemble average or mathematical expectation.
Writing x1 ¼ y1; x2 ¼ y2; . . . ; xn ¼ yn; xnþ1 ¼ _y1; xnþ2 ¼ _y2; . . . ; x2n ¼ _yn; then Eq. (1) can be

written in the state space form as

_x1 ¼ xnþ1;

_x2 ¼ xnþ2;

..

.

_xn ¼ x2n;

_xnþ1 ¼ �a11xnþ1 � g1ðx1;x2; . . . ; xnÞ þ w1ðtÞ;

_xnþ2 ¼ �a22xnþ2 � g2ðx1;x2; . . . ; xnÞ þ w2ðtÞ;

..

.

_x2n ¼ �annx2n � gnðx1;x2; . . . ;xnÞ þ wnðtÞ: ð2Þ

The stationary FPK equation for the mdof nonlinear system becomesXn

i¼1

Di

q2p
qx2nþi

�
qðxnþipÞ

qxi

þ
q

qxnþi

f½aiixnþi þ giðx1;x2; . . . ;xnÞ
pg

� �
¼ 0: (3)

Eq. (3) can be re-arranged asXn

i¼1

q
qxnþi

Di

qp

qxnþi

þ aiixnþip

� �� �
¼
Xn

i¼1

xnþi

qp

qxi

�
q

qxnþi

½giðx1;x2; . . . ;xnÞp


� �
: (4)

The joint stationary probability density function (jspdf) pðx1; x2; . . . ;x2nÞ or simply p is a solution
of Eq. (4) if p satisfies the following equations:

Di
qp

qxnþi

þ aiixnþip ¼ 0; i ¼ 1; 2; . . . ; n (5)
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and Xn

i¼1

xnþi
qp

qxi

�
q

qxnþi

½giðx1; x2; . . . ;xnÞp


� �
¼ 0: (6)

By virtue of Eq. (5), the general solution of the jspdf pðx1; x2; . . . ;x2nÞ can be shown to be

p ¼ qðx1; . . . ; xnÞe
�1=2

Pn

i¼1
bix

2
nþi ; (7)

where qðx1; . . . ;xnÞ or simply q is a function of x1; x2; . . . ; and xn; and bi ¼ aii=Di:
Substituting Eq. (5) into Eq. (6), one hasXn

i¼1

xnþi
qp

qxi

þ bixnþigiðx1;x2; . . . ; xnÞp

� �
¼ 0: (8)

By applying Eq. (7), Eq. (8) becomesXn

i¼1

xnþi

qq

qxi

þ bixnþigiðx1;x2; . . . ; xnÞq

� �
¼ 0: (9)

Since xnþi are linearly independent, Eq. (9) reduces toXn

i¼1

qq

qxi

þ bigiðx1; x2; . . . ;xnÞq

� �
¼ 0: (10)

By virtue of Eq. (10), one has

q ¼ qiðx1; . . . ;xi�1; xiþ1; . . . ;xnÞe
�
R

bigi dxi ; (11)

with i ¼ 1 or 2 ... or n:
After some algebraic manipulation, one can show that there exists a function Uðx1; x2; . . . ;xnÞ

such that

dU ¼ b1g1 dx1 þ b2g2 dx2 þ � � � þ bngn dxn; (12a)

which can be expressed as

dU ¼
qU

qx1
dx1 þ

qU

qx2
dx2 þ � � � þ

qU

qx n
dxn; (12b)

where

qU

qxi

¼ bigi; i ¼ 1; 2; . . . ; n: (12c)

By making use of Eq. (12), one can show that the necessary and sufficient condition for Eq. (12a)
to be an exact differential equation is

b1
qn�1g1

qx2qx3 . . . qxn

¼ b2
qn�1g2

qx1qx3 . . . qxn

¼ . . . ¼ bn

qn�1gn

qx1qx2 . . . qxn�1
: (13)

By virtue of Eqs. (7), (10), (11) and (13), one can obtain

p ¼ Ce�f; (14)
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in which C is the normalization constant and

f ¼
1

2

Xn

i¼1

bix
2
nþi

 !
þ

Z
bigi dxi;

where i in the second term on the right-hand side (rhs) can take the value of 1 or 2 . . . or n:

Remark 2.1. Eq. (14) is the basis of the presently proposed SNL technique. The stationary
potential in Eq. (14) is different from those presented by Caughey [4,5], Lin and Cai [6], Soize [7],
Zhu and Lin [8], To [2], Cai and Lin [9], and Zhu and Huang [10]. The major difference between
the present solution and those in Refs. [2,4–8] is the fact that in the present solution bi are, in
general, not equal. The present solution is also different from those of Refs. [9,10] in that in the
present solution application of the theory of differential equations is made directly and the
solution is relatively simple to obtain, while those in Refs. [9,10] require relatively restrictive
criteria. Therefore, the class of mdof nonlinear systems included in Eq. (14) is relatively larger
than that previously exists in the literature. Furthermore, in the foregoing derivation the
Caughey–Wu form [4] has not been employed.

Remark 2.2. By virtue of Eq. (12), the potential energy of the mdof nonlinear system is given by

U ¼

Z
bigi dxi; i ¼ 1 or 2 . . . or n (15)

such that Eq. (1) can also be written as

€yi þ aii _yi þ
1

bi

qU

qyi

¼ wiðtÞ; (16)

where now the subscript i ¼ 1; 2; . . . ; n:
One can also express

H ¼
1

2

Xn

i¼1

x2nþi

 !
þ gðx1; x2; . . . ; xnÞ; (17)

where the second term on the rhs is related to the potential energy of the system defined by Eq.
(15). Eq. (15), when all the factors bi are equal to unity, is equal to the second term on the rhs of
Eq. (17). For illustration, this expression will be explicitly derived in Section 4. Thus, the function
H in Eq. (17) is not proportional to f in Eq. (14). In other words, f in Eq. (14) is different from
that provided in Refs. [4,5], for example.

Remark 2.3. Generalization to nonlinear systems with parametric stationary random excitations
of the white noise type is simple. For example, if the white noise excitations, wiðtÞ on the rhs of
Eq. (16), are replaced with siðHÞwiðtÞ; which contain the parametric random excitation terms
through the coefficients siðHÞ of the excitations, the coefficients in Eq. (14) become

bi ¼
aii

ðs2i DiÞ
:
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3. SNL technique

A two-stage approach is adopted in this section. The first stage is to find the equivalent factors
of the damping terms and the second stage is to determine the exact jspdf of the equivalent
nonlinear system by applying the results in Section 2. In the second stage, a coordinate
transformation is essential. One should note that there are recent publications on equivalent
nonlinearization for mdof nonlinear systems under Gaussian white noise excitations [9,11,12]. In
particular, Ref. [11] is based on the exact solution of Zhu and Huang [10] mentioned in Section 2.
Three criteria for the equivalent nonlinearization technique presented in Ref. [11] are required and
therefore it is different from that to be presented in this section. On the other hand, in Ref. [12] the
equivalent nonlinearization is hinged also on the exact solutions for systems with linear dampings
since the damping coefficients are polynomials of total energy functions of the nonlinear systems.
As the total energy of a nonlinear system is assumed to be time invariant the dampings considered
in Ref. [12] are linear. In addition, the equivalent nonlinearization technique is based on the
minimization of the mean square of the difference between given and approximated dampings.
Consequently, the nonlinearization techniques in Refs. [9,11,12] are different from the one to be
presented in the following. In addition, they require relatively more algebraic manipulations and
therefore the SNL technique to be presented in the following is simpler.
Consider a general mdof nonlinear system governed by the equations of motion

€yi þ hiðy1; y2; . . . ; yn; _y1; _y2; . . . ; _ynÞ ¼ wiðtÞ; (18)

where i ¼ 1; 2; . . . ; n whereas hi are nonlinear functions of y1; y2; . . . ; yn; _y1; _y2; . . . ; and _yn:
In the first stage of solution an equivalent nonlinear system to that described by Eq. (18) is

required. Let the equations of motion of the equivalent system be

€yi þ f iðHÞ _yi þ
1

bi

qUðy1; y2; . . . ; ynÞ

qyi

¼ wiðtÞ; (19)

where i ¼ 1; 2; . . . ; n while bi has been defined in Section 2; f iðHÞ ¼ aiiðHÞ or simply f i ¼ aii are
the damping coefficients of the equivalent nonlinear system. Note that f i will be obtained in the
following.
Clearly, there exists a deficiency between every pair of equations of the given system in Eq. (18)

and the equivalent nonlinear system in Eq. (19). The equation pairwise deficiency EiðY ; _Y Þ is
defined as

EiðY ; _Y Þ ¼ f iðHÞ _yi þ
1

bi

qUðY Þ

qyi

� hiðY ; _Y Þ; (20)

where Y ¼ ½y1; y2; . . . ; yn
; with i ¼ 1; 2; . . . ; n:
EiðY ; _Y Þ is transformed into EiðH; y1; y2; . . . ; ynÞ and the average of the square of the equation

pairwise deficiency over the phases in every cycle is written as

I i ¼

Z 2p

0

� � �

Z 2p

0

½EiðH; y1; y2; . . . ; ynÞ

2 dy1 dy2 . . . dyn: (21)
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Then, I i is minimized with respect to f i: That is,

dI i

df i

¼ 0;

which results in the factors associated with the damping terms as

f iðHÞ ¼

R 2p
0 � � �

R 2p
0 ½ð _yiÞhi � ð _yiÞgi
dy1 dy2 . . . dynR 2p

0 � � �
R 2p
0 ð _yiÞ

2 dy1 dy2 . . .dyn

; (22)

where i ¼ 1; 2; . . . ; n while hi ¼ hiðH; y1; y2; . . . ; ynÞ and gi ¼ ð1=biÞqU=qyi ¼ giðH; y1; y2; . . . ; ynÞ;
in addition, yi and _yi are functions of H; y1; y2; . . . ; yn: Note that Eq. (22) is the essence of the
present SNL technique which is entirely different from those in Refs. [9,11,12].
Before proceeding further it should be mentioned that dI i=df i ¼ 0 is a minimum as

d2I i

df 2i
¼

Z 2p

0

� � �

Z 2p

0

ð _yiÞ
2 dy1 dy2 . . . dyn (23)

is always positive as long as H is real.
The second stage of solution of the present SNL technique is to obtain the exact joint stationary

probability density function (jspdf) of the equivalent system governed by Eq. (19). It is defined by
Eq. (14).
Before ending this section, it should be mentioned that generalization of the SNL technique to

include parametric stationary white noise excitations along the line presented in Remark 2.3 is
simple but will not be considered presently for brevity.
4. Application and comparison

In order to demonstrate the simplicity of the proposed SNL technique and its accuracy, the tdof
nonlinear system governed by the following equations of motion is considered:

€y1 � ðl1 � z1 _y
2
1Þ _y1 þ o21y1 þ ay2 þ bðy1 � y2Þ

3
¼ w1ðtÞ;

€y2 � ðl1 � l2 � z2 _y
2
2Þ _y2 þ o22y2 þ ay1 þ bðy2 � y1Þ

3
¼ w2ðtÞ; ð24Þ

where a; b; zi; li; and oi with i ¼ 1; 2; are constant, and the remaining symbols have already
been defined above. Note that the above nonlinear system contains nonlinear damping terms and
nonlinear stiffness terms simultaneously. Thus, no exact solution is available. The approximate
solution for this system has been obtained by applying another SNL technique [2] in which the
equivalent damping coefficient is different from the present one defined by Eq. (22). Furthermore,
in Ref. [2] no comparison was made to results by using MCS.
In the first stage of solution in the presently proposed SNL technique, the following equivalent

system of equations is required:

€y1 þ f 1ðHÞ _y1 þ g1 ¼ w1ðtÞ; €y2 þ f 2ðHÞ _y2 þ g2 ¼ w2ðtÞ; (25)
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where gi with i ¼ 1; 2 are given as

g1 ¼ o21y1 þ ay2 þ bðy1 � y2Þ
3; g2 ¼ o22y2 þ ay1 þ bðy2 � y1Þ

3; (26a,b)

such that the potential energy of the system can be shown as

Uðy1; y2Þ ¼
1
2
b2o

2
1y
2
1 þ

1
2
b2o

2
2y
2
2 þ ab2y1y2 þ

1
4

bb2ðy1 � y2Þ
4; (26c)

in which the parameter bi is defined in Eq. (7).
The coordinate transformation selected for this tdof nonlinear system is

_y1 ¼
ffiffiffiffiffiffiffi
2H

p
sin y1 cos y2; _y2 ¼

ffiffiffiffiffiffiffi
2H

p
sin y1 sin y2 (27a,b)

and

gðy1; y2Þ ¼
1

2

X2
i¼1

o2i y2i þ ay1y2 þ
b

4
ðy2 � y1Þ

4 (27c)

or its transformed version

gðH; y1; y2Þ ¼
b

4
ðR1 þ R2Þ; (27d)

in which

R1 ¼
4H

b
cos2 y1 cos2 y2

� �
; R2 ¼

4H

b
cos2 y1 sin

2 y2

� �
: (27e,f)

By applying the above coordinate transformation to Eq. (17), one can show that Eq. (17) is
satisfied.
By virtue of Eq. (22) one can show that

f 1ðHÞ ¼ 9
8
ðz1HÞ � l1: (28a)

Similarly, one can obtain

f 2ðHÞ ¼ 9
8
ðz2HÞ � l1 þ l2: (28b)

Having obtained Eq. (28) one can evaluate bi; in which aii ¼ f iðHÞ: Consequently, the exact jspdf
of the equivalent system can be determined by Eq. (14). With the system parameters a ¼ 1; b ¼

� ¼ 0:1; 0:3; z1 ¼ 0:1; z2 ¼ 0:2; l1 ¼ 1:0; l2 ¼ 3:0; S1 ¼ 1:0=ð2pÞ; S2 ¼ 1:0=ð2pÞ; and oi ¼ 1:0;
with i ¼ 1; 2; one obtains the exact jspdf of the equivalent tdof nonlinear system as Eq. (14),
where now

f ¼
1

2

X2
i¼1

bix
2
nþi

 !
þ Uðx1; x2Þ

or transforming back to the original coordinate system,

f ¼
1

2
ðb1 _y

2
1 þ b2 _y

2
2Þ þ Uðy1; y2Þ; (29)

in which Uðy1; y2Þ is defined by Eq. (26c) and b1ab2:
For brevity, representative computed results of the exact jspdf of the equivalent nonlinear

system obtained by the present SNL technique are compared with those of MCS and included in
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Fig. 1. Frequency histogram and joint probability density of tdof nonlinear system with z1 ¼ 0:1; z2 ¼ 0:2; � ¼
0:1; l1 ¼ 1:0; l2 ¼ 3: MCS results (bars), data from present SNL technique (solid circles). (a) Displacement x1; (b)
velocity _x1; (c) displacement x2; and (d) velocity _x2:
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Figs. 1 and 2. The MCS results are obtained by using the computer package MATLAB version
6.5. It is interesting to note that owing to the nonlinear damping terms in the system, the responses
are non-Gaussian even when the applied stationary white noise excitations are Gaussian. During
computational experiments, it was observed that for the above system parameters with b ¼ 0; the
MCS solution for displacements were unstable. However, when the Gaussian white noise
excitation w1ðtÞ was changed to ð2Þ1=2w1ðtÞ; the displacements from the MCS were stable. This
indicates that when b ¼ 0 the system displacement responses are very sensitive to the change of
magnitudes of Gaussian white noise excitations. The proposed SNL technique can capture
the non-Gaussian character of all responses. With reference to all the cases considered in the
computational experiments and those presented in Figs. 1 and 2, one can conclude that the
present SNL technique for mdof nonlinear systems can give very accurate results compared with
those from MCS.
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Fig. 2. Frequency histogram and joint probability density of tdof nonlinear system with z1 ¼ 0:1; z2 ¼ 0:2; � ¼
0:3; l1 ¼ 1:0; l2 ¼ 3: MCS results (bars), data from present SNL technique (solid circles). (a) Displacement x1; (b)
velocity _x1; (c) displacement x2; and (d) velocity _x2:
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It may be also appropriate to note that while MCS results and approximate solutions for
marginal stationary probability densities were included as three-dimensional plots in Ref. [11]
they were not superimposed on one another and therefore direct comparison between the MCS
and approximate solutions cannot be made. A closer inspection on the magnitudes of the
marginal stationary probability densities in Figs. 2–5 of Ref. [11] reveals that the MCS results and
approximate solutions are significantly different.
5. Concluding remarks

A statistical nonlinearization (SNL) technique has been presented for the solution of the joint
probability density function of general multi-degrees of freedom (mdof) nonlinear systems under
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stationary white noise excitations. It consists of two stages in the solution. The first stage of
solution is the determination of the equivalent damping factors and the second stage is the
application of the exact joint stationary probability density function (jspdf) for the equivalent
nonlinear system. The exact solution is different from that of Caughey [4,5], for example, in that
the ratios of damping coefficients to intensities of applied white noise excitations are not identical
and therefore it is new. The present exact solution is also different from those of Cai and Lin [9],
and Zhu and Huang [10] in that it is obtained directly from the theory of differential equations
while that of Cai and Lin [9] requires satisfaction of a relatively restrictive criterion, and that of
Zhu and Huang [10] adopts the Hamiltonian formulation such that their exact solution depends
on the number of independent integrals of motion, for example. The proposed SNL technique is
simple to implement compared with those in Refs. [9,11,12] since the equivalent damping
coefficients defined by Eq. (22) can be easily derived.
Computed results by applying the proposed SNL technique for a general two-degrees of

freedom (tdof) nonlinear system are compared with those obtained by the Monte Carlo
simulation (MCS). With reference to the obtained results and those presented in Figs. 1 and 2, one
can conclude that the SNL technique is simple to implement, very accurate, and is applicable to
mdof systems with both nonlinear damping and nonlinear restoring forces. It is applicable to
systems with large nonlinearities and large intensities of excitations.
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